

Embedded Internet Systems

Concepts and Applications

Introduction

Java for Embedded Systems Internet enabled Embedded Devices Dallas TINI and Imsys SNAP Simple demonstrations. Target Applications.

> Claro Noda IMRE-Physics Faculty. University of Havana. October, 2004

Introduction

Embedded Systems are ubiquitous

- Toys, telephones, televisions, VCRs, DVD players, stereos. Almost anything that plugs into the wall.
- Cars produced today, more than 80 Microcontrollers, millions of lines of code.
- There is a growing number of cell phones and PDAs
- Although many homes has a PC, almost everyone has a computer embedded into things.

IBM Terminology	\$ \$ [
embedded system	
A computer system that is a component of a larg	er machine
or system. Embedded systems can respond to ev	
time. Hosts of embedded systems include watche	es,
household appliances, cars, and cellular phones.	
Reprint Courtesy of Copyright International Business Machines C 2004 © Copyright International Business Machines Corporation. A	orporation 1993, Il rights reserved

Introduction Commodities based on silicon

Similar to PCs Embedded Systems are comprised of:

- Microcontroller
- Memory RAM/EPROM/Flash + I/O ports.
- Interface LCD, Keyboard, serial terminal, e-mail, Web
- Use languages like Assembler, C and Java.
- And some runs multithreaded, preemptive RTOS.

But differentiate in:

- Small form factor
- Low power consumption
- Broad based I/O
- Limited computing resources. Most systems in the market today has **2Kb-32Mb** Mem **8-bit/32-bit** Architectures operating below **100** MHz.

Java for Embedded Systems

Embedded Systems meet the net

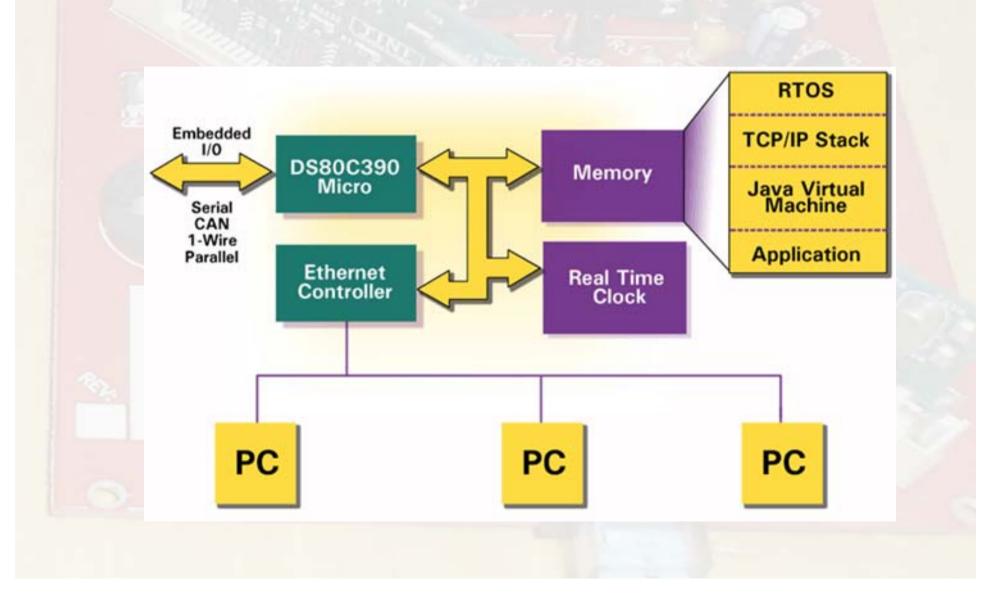
- TCP/IP is a "heavy" communication protocol (ping, telnet, ssh *but also* smtp, pop3, ftp, http)
- Bulky code pieces implies high cost to implement from scratch.
- Most small microcontrollers lack a way to connect to the network as opposed to PCs that can use Ethernet, USB DSL, modems, etc.

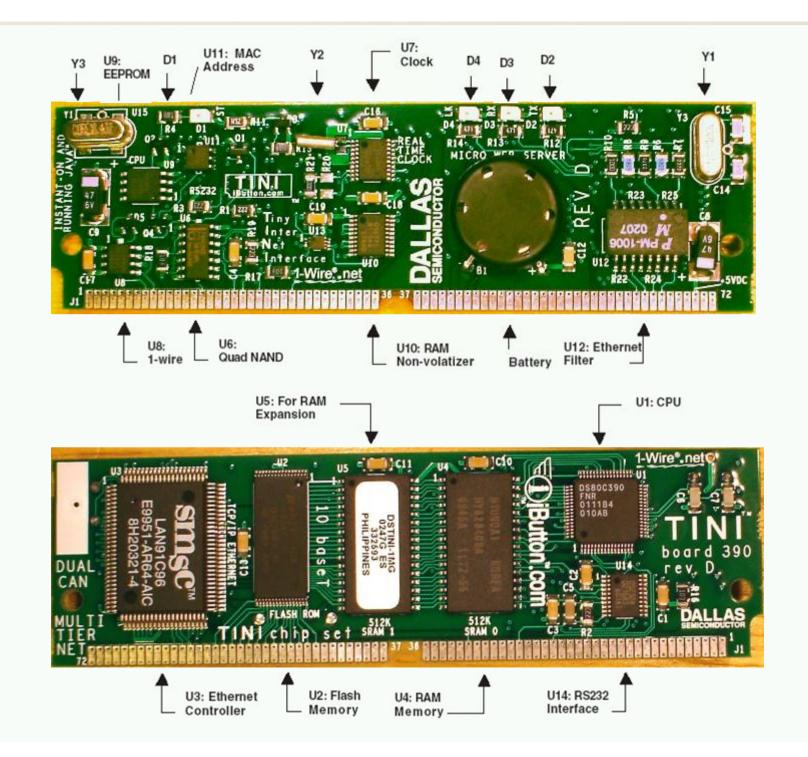
Java to the rescue

- Java superficially resemble C++, but Java differs in that it has a special relationship with the Internet.
- Portability simplifies programming (cross platform development)
- There're new Native Java Microcontrollers available
- Lower engineering time \rightarrow cuts development cost
- Lower time to market/deployment.
- Still difficult to justify 4 big production volumes

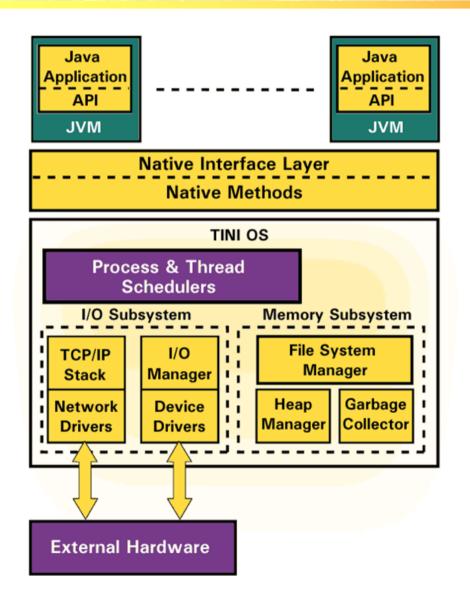
Internet enabled Embedded Devices

Dallas Semiconductor Tiny Internet Network Interface, TINI


- Based on the DS80C390 (8051 compatible, 40 MHz, 4x8bit I/O)
- 512Kbyte Flash ROM + 1Mbyte NV SRAM


Imsys Simple Network Application Platform, SNAP

- Based on the Imsys Cjip processor (Native Java, CISC/WISC 66MHz, 24bit I/O)
- 2 Mbyte Flash + 8 Mbyte DRAM
- 72-pin SIMM board (31.8 mm x 102.9 mm)
- reference implementation (design details made public)
- system component (fully specified, heavily tested)
- gives sensors and other devices a voice in the network allowing them to be monitored, controlled, and managed remotely
- on board CAN, 1-Wire, I²C, SPI and 10/100 Base-T Ethernet

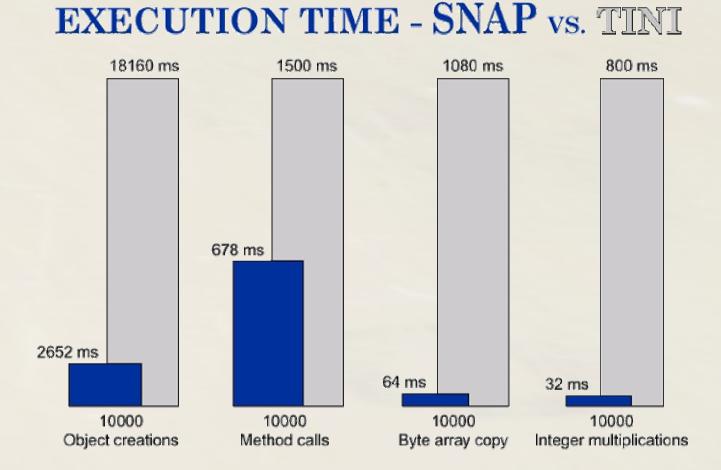


TINI Platform Hardware

Dallas TINI Software

JVM

- small footprint less than 40 Kb
- threads, all primitives and strings
- java.lang, java.io, java.net and java.util
- specific classes com.dalsemi.*


TINI OS

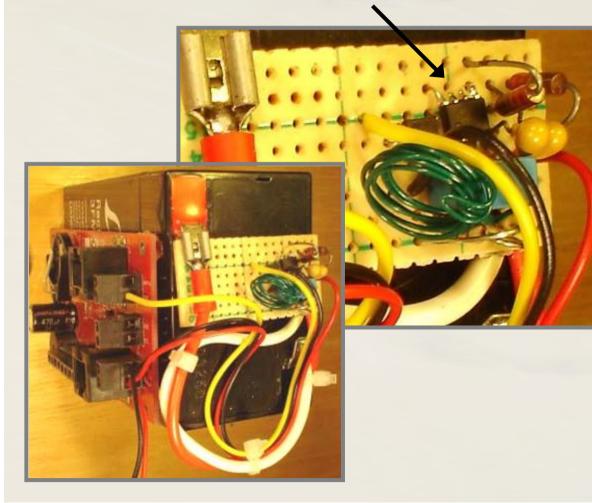
- task scheduling, a file system, memory and I/O managers
- optimized to switch between multiple executing instances of a Java bytecode interpreter
- 8-ms time slices, round robin scheduler

TINI SDK

- includes the JRE + Mics tools
- Sun JDK for cross platform dev

Native Java Execution

Source: Imsys. Test code download at http://snap.imsys.se


Web Server Demo

TINIWebserver

- simple multithreaded web server listen to port 80
- demonstrates the use of the 1-Wire net for remote monitoring
- reports time, date and current temperature
- logs every access attempt to web.log in TINI file system

Battery Management Demo

The 1-Wire netDS2438 Smart Battery Monitor

- Lead-Acid battery 6V 4Ah
- TINI runs at 150 mA
- Batt-pack lasts approx 20h
- 5% Fuel-Gauging accuracy
- Monitors voltage, current and temperature
- Uniquely addressable ID for bus sharing
- 40 Byte user EEPROM for pack-specific data

Target Applications

Energy Management

Generation and Demand Side Management. Load balancing, efficiency and peak hours.

Meteorology

Distributed weather stations would provide a stream of real-time surface data to feed hurricanes forecast models on-the-fly.

Habitat Monitoring in Social Insects

Dynamics. Experiments and modeling.

Energy Management

Motivation

- power grid -- the internet -- quality of power two networks that overlap
- nature of power consumption, stochastic or predictable?
- system limitations, self-adjustments (via power failure)

problem

- thermoelectric efficiency, operational point & inertia
- peak hours generation & quality of electricity
- a smart workaround
- distributed intelligence
- utilities load percentage been published
- DSM an approach to smooth the peak \rightarrow system become more stable

Weather Stations

TINI + 1-wire weather station: the "brute force" approach

Wide-spread weather stations concurrently populate the "weather database" over the network in real time.

Interest

- Surface data feeds hurricane models on-the-fly the higher the accuracy of data fed into the model the closer the forecast
- micro-weather remote monitoring fine-tuned (sustainable?) agriculture management
- geo catching/mapping automation

Habitat monitoring in Social Insects

Optimization algorithms

- social insects show self organization (SO)
- swarm-intelligence systems are hard to "program" paths to problem solving aren't specified but *emergent*
- study SO in natural system \rightarrow modeling behavior \rightarrow use model for artificial device

Foraging activity models

- random search for foods
- communication through dancing (bees)
- negative feedback helps stabilization
- SO relies in amp of fluctuations randomness key to new solutions seed for nucleation and grows structures emerge despite randomness

Ants dynamics

Ants nest experiments

- nest occupies a surface area up to 600 m²
- time correlation of activity between different entries
- excellent context for TINI
- new tools \rightarrow might new info come out?

Experimental setup

- activity sensor on every entry
- enviromental data
- TINI collects and forward data to servers

Interpretation

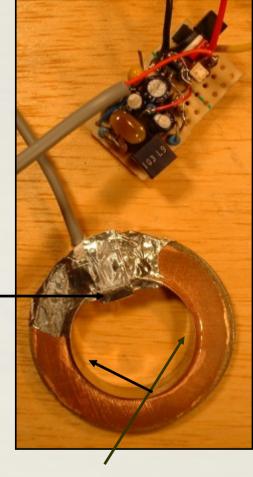
- Fc [pi, pj] (t = 0) = 1 \rightarrow environmental role
- Fc [pi,pj] (t = τ) = 1 \rightarrow certain kind of SO

Next step would be modeling

Ants activity sensor

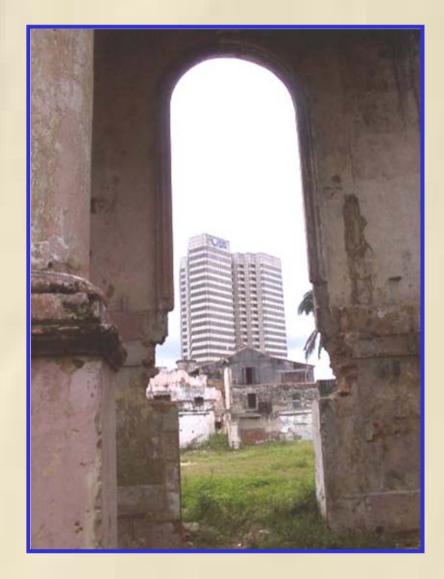
Ideas for a prototype

- detect activity at the nest entry
- low power consumption
- low count drift
- robustness for field use
- low maintenance


our proposal

- an infrared approach (non-intrusive?)
- 1-wire interface for scalability
- 25 KHz synchronic demodulation for reliability

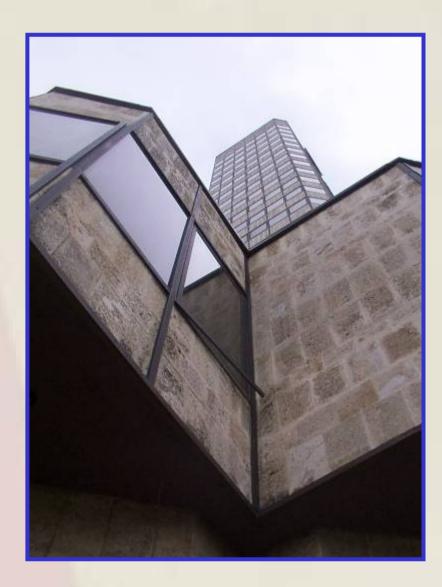
emitter & photo transistor


additional data

- daylight intensity
- temperature
- humidity

inner mirror

It's more than fun...



The exciting part is that this technology is nascent - we are starting to see what it means the luxury of having inexpensive ubiquitous connectivity between embedded systems, PCs and humans.

The bottom line:

There is plenty of room for innovation.

Great opportunity for innovation

Are we up to the challenge?

Application development:

- Application specific knowledge
- Hardware
 Digital & Analog Electronics
- Sensor design science
- Java Programming, Algorithms, Data Structures
- Web Technologies low and high level protocols